TSP Objective	International Objective	Tri-State Objective
1.1-List NRCS roles and responsibilities in		
nutrient management planning as described		
in the following documents: GM 190-402,		
Nutrient Management Standards 590, Field		
Office Technical Guide (FOTG) Section IV		
1.2-List national, state-specific, and local-		
specific policies that relate to nutrient		
management planning		
1.3-Describe your state's nutrient		
management certification process		
1.4-Explain why nutrient management is		
important to the environment and public		
<mark>health</mark>		
1.5-Explain the responsibility of nutrient		
management planners		
1.6-Describe the role of nutrient management	NM7.6- Describe when to use N-based or P-	
in: cash crop agricultural systems, crop and	based recommendations for manure/bio-solid	
livestock agricultural systems, intensive	application	
livestock agricultural systems, and specialty		
crops		
·	NM7.7- Given soil analysis recommendations	
	and manure analysis, use manure and	
	commercial fertilizer sources to construct a P-	
	based and N-based nutrient application	
	program	
1.7-Identify professional risks involved for the		
planner in nutrient management planning		
1.8-Describe the roles and responsibilities of		
private entities and agencies other than the		
NRCS in nutrient management planning		

1.9- Use Sections I – V of the eFOTG in nutrient management planning 1.10-Incorporate national, state, and local water quality regulations into the nutrient	NM7.6-Describe when to use N-based or P-based recommendations for manure/biosolid application NM7.7-Given soil analysis recommendations and manure analysis, use manure and commercial fertilizer sources to construct a P-based and N-based nutrient application program NM7.8-Describe how the following areas are environmentally sensitive: a)surface waters, b) sinkholes, c)direct conduits to groundwater, d) wetlands	
management components of a conservation		
<mark>plan</mark>		
2.1-Describe how the following chemical, biological, and physical processes affect nutrient management planning: oxidation, reduction, leaching, immobilization, volatilization, mineralization, denitrification, atmospheric deposition, erosion, runoff	NM7.10-Describe how N and P loss from the following can affect the environment: erosion, a) erosion, b) runoff, c) volatilization, d) leaching, e) denitrification, f) tile drainage	
2.2-Explain Liebig's Law of the Minimum	NM1.1-List the 17 elements essential for plant nutrition	
2.3-Outline nutrient cycles for C, N, P, K, and S	NM2.2-Describe nutrient mineralization, immobilization, and uptake antagonism between ions	
2.4-Explain how soil test nutrient levels relate to crop yield response and potential environmental impacts		

2.5-State the environmental risk of applying		
nutrients above economic optimums		
2.6-Describe how nutrient availability,	SW3.1-Describe the processes of detachment,	
detachment, and transport affect nutrient	transport, and deposition for wind and water	
movement	erosion	
2.7-Describe processes that affected the fate	SW3.6-Describe how erosion affects the	
of nutrients in the environment	following: a) crop yield potential, b) water	
	holding capacity, c) nutrient content, d)	
	organic matter content, e) infiltration, f)	
	water quality, g) air quality	
2.8-Describe how erosion, runoff, leaching,	SW7.7-List the processes that transport	
and volatilization affect nutrient movement in	nitrogen or phosphorus from a field	
the environment		
	SW7.8-List management practices that reduce	
	phosphorus or nitrogen transport from a field	
	SW 7.9-Describe how lateral flow of shallow	
	groundwater contributes to surface water	
	contamination	
2.9-Explain how C, N, P, and S move in the	SW7.5-Describe how the following affect N, P,	
environment	K, or S movement: a) soil pH, b) organic	
	matter, c) CEC, d) soil texture, e) nutrient	
	solubility	
2.10-List negative impacts of C, N, P, K, and S		
on the environment		
2.11-List the negative impact of excess salts in	SW10.16-Explain how salinity and sodicity	
soils	affect water quality	
2.12-Describe how to manage excess salts in a	SW10.16-Explain how salinity and sodicity	
soil	affect water quality	
2.13-Describe the role of soil quality in		
nutrient management planning		
2.14-Define eutrophication	SW10.4-Define eutrophication and hypoxia	

2.15-Describe how eutrophication occurs		
2.16-List consequences of eutrophication		
2.17-List sources of heavy metals in soils	SW10.13-Describe how the following components of biosolids affect surface water quality	
2.18-Explain why heavy metals are hazardous in the environment		
CLIMATE AND WEATHER		
3.1-Explain how climate and weather affect nutrient management planning	SW8.2-Describe how the following factors influence evapotranspiration: a) wind, b(temperature, c) solar radiation, d) relative humidity, e) plant available water, f) plant canopy, g) crop residue surface cover SW8.3-Explain how excessive soil moisture affects plant nutrient uptake and availability SW8.4-Explain how soil moisture deficiency affects plant nutrient uptake and availability	
3.2-Explain the importance of the following climate and weather phenomena on nutrient management planning: intensity, type, and duration of precipitation; temperature,	arrects plant nutrient uptake and availability	
humidity, wind, and barometric pressure		
3.3-Locate climatological data for a given site IRRIGATION		
3.4-List irrigation factors that may increase nutrient leaching, volatilization, runoff, and erosion	SW9.5-Identify methods to reduce irrigation runoff	
3.5-Explain how irrigation affects nutrient management planning		
3.6-Describe how nutrient contamination of ground and surface water can occur from irrigation		

3.7-Construct an irrigation frequency	SW9.3-Explain how to use field soil moisture	
schedule to minimize leaching and surface	measurements and the water balance	
runoff potential and reduce irrigation-induced	equation to schedule irrigation	
erosion		
3.8-Use a soil survey to determine the		
available water-holding capacity and intake		
rate of a soil to be irrigated		
3.9-Use NRCS irrigation guide or local weather		
data to determine daily/monthly consumptive		
use values		
3.01-Calculate nitrogen credits from irrigation		
water application		
3.11-Describe the role of fertigation in		
nutrient management planning		
DRAINAGE		
3.12-List drainage factors that may increase	SW9.4-Describe how soil texture affects tile	
nutrient leaching, volatilization, and runoff	drainage spacing and depth	
form the soil		
3.13-Explain how drainage affects nutrient		
management planning		
3.14-Describe how nutrient contamination of		
surface water can occur from tile drainage		
3.15-Describe how to use drainage		
management to reduce nutrient losses to		
surface water		
PROFICIENCY AREA 4-Environmental Risk		
Analysis		
4.1-Explain why environmental risk analysis is		
an important component of nutrient		
management planning		
4.2-Explain why the following may be	SW10.7-Identify health risks to humans when	
environmentally sensitive: perennial water	drinking water contains nitrate-N or coliform	
bodies, surface inlets, areas of concentrated	bacteria above the drinking water standard	

flow; shallow depth to groundwater; coarse textured soils; working or abandoned wells; karst terrain and sink holes; public water supply wellheads, public water supply watersheds, lakes, ponds, and reservoirs, areas prone to flooding, leaching, and runoff; stream corridors	SW10.8-Recognize health risks to livestock of drinking high nitrate-N water SW10.9-Describe how water contamination occurs at a well head SW10.10-Explain methods of preventing contamination at a wellhead SW10.11-Explain the purpose of anti-back-siphoning devices	
	SW10.12-Explain how high sediment levels affect surface water quality	
4.3-Describe the importance of social and interpersonal concerns in nutrient management planning		
4.4-Explain environmental risks associated with improper nutrient management	SW10.14-Explain how nitrogen and phosphorus affect ground and surface water quality	
4.5-Descibe how to use water quality vulnerability assessment tools in conservation planning		
4.6-Define risks involved in nutrient management due to: a) sediments, b) pathogens, c) N, d) P, e) K, f) S	SW10.7-Identify health risks to humans when drinking water contains nitrate-N or coliform bacteria above the drinking water standard	
	SW10.12-Explain how high sediment levels affect surface water quality	
4.7-Describe how to use soil test results in environmental risk analysis		
4.8-Describe the risks to livestock from forages grown on high soil test K soils		

	T	T
4.9-Describe the importance of the Ca/Mg		
ratio when feeding forages to livestock		
4.10-Use individual site characteristics for the	7.4-Describe factors involved in phosphorus	
Phosphorus Index to characterize the	loss assessment at field scale	
vulnerability of a site for P loss		
4.11-Describe methods of reducing site	SW10.15-Explain the benefits of drainage	
vulnerability to soluble and sediment-bound	control structures, bioreactors, filter/buffer	
phosphorus transport	strips, riparian zones/tree plantings, and	
	wetlands on water quality	
4.12-Use individual site characteristics for the		
Leaching Index to characterize the		
vulnerability of a site for nitrate leaching		
4.13-Describe methods of reducing site	SW10.15-Explain the benefits of drainage	
vulnerability to nitrogen leaching	control structures, bioreactors, filter/buffer	
	strips, riparian zones/tree plantings, and	
	wetlands on water quality	
4.14-Use the Revised Universal Soil Loss		
Equation (RUSLE) and Wind Erosion Equation		
(WEQ) to evaluate the risk of soil transport by		
erosion from a site		
4.15-Describe methods of reducing site	SW3.7-Explain how the following decrease	
vulnerability to soil erosion	erosion potential: a) strip cropping,	
	b)contouring, c) terraces, d) grassed	
	waterways, e) surface residue, f) cover crops,	
	g) row spacing and direction, h) buffer strips,	
	i) surface roughness, j) windbreaks, k) grade	
	stabilization structure	
4.16-Descirbe how the following soil	SW3.3-Explain how the following affect the	
properties impact nutrient movement to	rate of erosion by water: a) duration and	
surface or groundwater: texture, organic	intensity of rainfall, b) soil texture and	
matter, structure, degree of erosion, slope	structure, c) slope length, d) slope steepness,	
steepness, slope length, soil test levels for N,	e) vegetative and residue cover	
P, K, and pH, vegetation, land use		

	SW3.4- Explain how the following affect the	
	rate of erosion by wind: a) vegetative and	
	residue cover, b) wind velocity, direction, and	
	duration c) unsheltered distance, d) soil	
	surface roughness, e) soil texture	
4.17-Define TMDL		
4.18-Locate a TMDL list for a watershed in a		
<mark>state</mark>		
4.19-Describe how TMDLs impact a nutrient		
management plan in a watershed		
PROFICIENCY AREA 5-Nutrinet Application		
Management		
5.1-Describe how and when to use the	NM3.3-Differentiate grid, zone, and whole	
following methods of monitoring nutrients in	field sampling approaches	
agricultural systems: whole-field sampling;		
grid sampling; management unit sampling;	CM5.4-Differentiate management zone, grid,	
tissue analysis; remote sensing; Pre-Sidedress	and field composite approaches to precision	
Nitrogen Test; Chlorophyll meters.	farming	
5.2-Describe how the following nutrient	NM4.1-Describe how the following serve as	
sources affect nutrient application;	plant nutrient sources: a) organi matter, b)	
commercial fertilizer, animal manures,	irrigation water, c) inorganic/organic	
industrial and municipal biosolids, compost,	fertilizers, d) soil minerals, e) animal	
sludge, irrigation water	manure/processed waste water, f)	
	urban/industrial byproducts/biosolids, g)	
	crop residue, h) residual soil nutrients, i)	
	shallow ground water	
5.3-Describe how the following affect nutrient	NM7.3-Use crop nutrient removal, cropping	
application; timing, application rate, method	system, and soil analysis information to apply	
of application, placement, form	the 4R nutrient management principles of the	
	right source, rate, time, and place	
5.4-Utilize soil test results and state fertilizer	NM3.7-Recognize how the following affect	
recommendations in developing a nutrient	soil analysis interpretation for crop	
management plan	management: a) probability of crop response	
	to added nutrients, b) reported nutrient	

	sufficiency level of units used to report	
	sufficiency level, c) units used to report	
	results, d) within-field variability, e)	
	environmental risk	
5.5-List factors to consider when making a	7.2-Describe how to set a realistic yield goal	
fertilizer recommendation	by using information about: a) production	
	history, b) soil productivity, c) management	
	level, d) yield-limiting factors	
5.6-Describe how to use the following	CM2.2-Define global positioning systems	
precision agriculture techniques in nutrient		
management; remote sensing, yield	CM2.3-Describe how the following precision	
monitoring, GIS/GPS, site-specific soil testing	agriculture tools are used in crop	
	management: a) guidance systems, b) remote	
	sensing, c) geographi8c information systems	
	(GIS), d) crop management zone, e) variable	
	rate technology (VRT)	
5.7-Describe how to use soil test results in a	CM7.7-Given soil analysis recommendations	
nutrient management plan	and manure analysis, use manure and other	
	fertilizer sources to construct a P-based or N-	
	based nutrient application program	
PROFICIENCY AREA 6: Components of	1 1 1 1	
Nutrient Management Plan		
6.1-Use the following components to	7.9-Describve the importance of the following	
construct an economically and	components of an economically and	
environmentally sound nutrient management	environmentally sound nutrient management	
plan: a)maps of facilities, fields, landscapes,	plan: a)maps of facilities, fields, and soils, b)	
and soils, b)environmentally sensitive areas,	environmentally sensitive areas, c) cropping	
c)cropping system rotation, d)expected yields,	system, d) expected yields, e) results of soil,	
e)results of soil, plant, water, and manure	plant, water, and manure analyses, f)	
analysis, f)quantification of nutrients from all	quantification of nutrients from all sources	
sources available to the farm, g)nutrient	available to the farm, g) nutrient budget for	
budget for each field, h)recommendations of	each field, H0 recommendations of nutrient	
nutrient rate, timing, form, and method of	rate, timing, form, and method of application,	
application, i)review and modification of plan	i) review and modification of plan as needed,	
•	j) records of management practices	

as needed, j)operation and maintenance of		
the plan		
PROFICIENCY AREA 7: Implementing the		
Nutrient Management Plan		
7.1-Identify parties responsible for		
implementing a nutrient management plan		
7.2-Descrigbe procedures to identify and		
track changes in soil test nutrient levels over		
time		
7.3-Explain consequences of increasing soil		
nutrient levels after implementing a nutrient		
management plan		
7.4-Identify changes in a farm operation that		
require updates/adjustments to a nutrient		
management plan		
7.5-Identify implementation, follow-up, and		
recordkeeping components of a nutrient		
management plan as identified in the 590		
Standard Standard		
7.6-Complete a "Nutrient Management Job		
Sheet"		
	NM4.10-Describe how the following affect	
	nutrient availability from manure: a) physical	
	form, b) animal source/ration, c) Moisture	
	content/percent solids, d) stage of	
	decomposition/composting, e) storage and	
	handling, f) application and timing method	
	NM4.11-Describe the importance of collecting	
	a representative sample of manure or	
	effluent	
	-	