Certified Crop Adviser Performance Objectives for Wisconsin 2014
WISCONSIN CERTIFIED CROP ADVISER PERFORMANCE OBJECTIVES

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>2</td>
</tr>
<tr>
<td>Nutrient Management</td>
<td>3</td>
</tr>
<tr>
<td>Soil and Water Management</td>
<td>11</td>
</tr>
<tr>
<td>Pest Management</td>
<td>21</td>
</tr>
<tr>
<td>Crop Management</td>
<td>31</td>
</tr>
<tr>
<td>References</td>
<td>35</td>
</tr>
</tbody>
</table>
FOREWORD

The performance objectives for Wisconsin cover a wide variety of topics in the areas of nutrient management, soil and water management, pest management, and crop production. Crop advisers should be knowledgeable in these areas. Many of the Wisconsin performance objectives overlap the international objectives. Consequently, some seemingly important subjects may have been omitted from the Wisconsin objectives if they were covered adequately in the international objectives. Overlap with international objectives was inevitable in some areas.

<table>
<thead>
<tr>
<th>MAJOR WISCONSIN CROPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
</tr>
<tr>
<td>Oat</td>
</tr>
</tbody>
</table>

Wisconsin certified crop advisers should be familiar with the crops listed in the box above. Hereafter they will be referred to as “major Wisconsin crops.” Crops grown on fewer than 20,000 acres, such as cranberries and table beets, are not included even though they are very important locally.
WISCONSIN CERTIFIED CROP ADVISER
PERFORMANCE OBJECTIVES

Nutrient Management Competency Areas:

1. Basic Concepts
2. Soil Acidity and Liming
3. Nitrogen
4. Phosphorus
5. Potassium, Calcium & Magnesium
6. Sulfur & the Micronutrients
7. Fertilizer Forms & Application
8. Manure Management
9. Soil Testing and Plant Analysis
10. Nutrient Management Planning
11. Soil and Plant Additives
NUTRIENT MANAGEMENT PERFORMANCE OBJECTIVES

Competency Area 1. Basic Concepts

01. Understand the factors that determine whether an element is essential for plant growth.

02. List the 17 essential plant nutrients, identify the form(s) in which each taken up by plants, and describe a metabolic role for each nutrient.

03. Discuss the source and significance of cation exchange and the typical range for Wisconsin soils.

04. Describe the influence of soil pH, clay content and organic matter content on cation exchange capacity.

05. Describe how nutrients are delivered to, and absorbed by plant roots.

06. Describe how the following soil characteristics affect nutrient availability:
 a. Texture
 b. Structure
 c. Drainage/aeration
 d. Soil moisture
 e. Organic matter
 f. CEC

07. Demonstrate an understanding of nutrient removal rates for the major Wisconsin crops.

Competency Area 2. Soil Acidity and Liming

01. Describe the sources of soil acidity.

02. Describe how soil pH affects availability of essential plant nutrients.

03. Describe soil properties that influence soil pH management.

04. Describe the factors used in the lime requirement calculations for Wisconsin soils and how each influences lime requirement and the neutralizing index of a liming material:
 a. Water pH
 b. Buffer pH
 c. Fineness of grind
 d. Calcium carbonate equivalent

05. Identify the optimum soil pH for major Wisconsin crops on mineral and organic soils.
06. Describe the benefits and drawbacks associated with various liming materials:
 a. Dolomitic aglime
 b. Calcitic aglime
 c. Pelletized lime
 d. Marl
 e. By-product liming materials

Competency Area 3. Nitrogen

01. Describe the role and mobility of nitrogen in plants and identify nitrogen deficiency symptoms for major Wisconsin crops.

02. Understand the timing of uptake and utilization of N for major Wisconsin crops that optimizes yield and limits loss.

03. Understand the nitrogen cycle and describe the following processes:
 a. Mineralization
 b. Nitrification
 c. Volatilization
 d. Denitrification
 e. Immobilization
 f. Leaching
 g. Symbiotic N fixation

04. Discuss significance of the carbon:nitrogen (C:N) ratio of crop residue and organic amendments and how they affect nitrogen availability to crops.

05. Describe the agronomic, economic and environmental consequences of nitrogen management factors:
 a. Rate
 b. Source
 c. Timing
 d. Placement

06. Describe nitrification and urease inhibitors, and slow release products used in crop production systems.
 a. Differentiate between an inhibitor and a slow release product
 b. Understand how these products improve N use efficiency

07. Compare advantages and disadvantages of each of the following nitrogen fertilizer materials with respect to placement, losses, handling, potential for crop injury, and use in various cropping and tillage systems:
 a. Anhydrous ammonia
 b. Ammonium sulfate
 c. Urea
 d. Urea-ammonium nitrate (UAN) solution
08. Explain the basis for the Wisconsin nitrogen rate guidelines:
 a. Maximum Return to Nitrogen (MRTN) for corn and wheat
 b. Nitrogen rate guidelines for other crops

09. Know how to credit N rate adjustments for previous leguminous crops, manure applications, green manures, and nitrogen soil tests.

Competency Area 4. Phosphorus

01. Describe the role and mobility of phosphorous in plants and identify phosphorus deficiency symptoms for major Wisconsin crops.

02. Explain how each of the following affect soil retention or “fixation” of fertilizer phosphorus and its availability to plants:
 a. Soil pH
 b. Clay content
 c. Method of placement
 d. Form of phosphorous applied

03. Describe factors that influence Wisconsin phosphorous management guidelines.

04. Know the importance of soil buffering on the buildup and drawdown of soil test P.

05. Explain the differences between soil test methods to determine available P.

Competency Area 5. Potassium, Calcium and Magnesium

01. Describe the role and mobility of potassium, magnesium, and calcium in plants and identify potassium and magnesium deficiency symptoms for major Wisconsin crops.

02. Describe the conditions under which ion antagonism affects potassium, calcium and magnesium uptake by plants.

03. Describe the soil conditions in which potassium, calcium and magnesium are most likely to be deficient.

04. Describe how soil texture affects Wisconsin’s potassium management guidelines.

05. Understand when to recommend gypsum as a soil amendment or fertilizer.

06. Understand why adjusting the soil Ca:Mg ratio is not an important management issue in Wisconsin.

07. Describe the conditions in which potato may be responsive to calcium fertilization.
Competency Area 6. Sulfur and the Micronutrients

01. Describe the role, relative requirements, and deficiency symptoms of:
 a. Boron in alfalfa and peas
 b. Manganese in corn/sweet corn, small grains, and soybean
 c. Sulfur in alfalfa, corn/sweet corn, and soybean
 d. Zinc in corn/sweet corn

02. Understand that boron can be toxic to seedlings.

03. Describe soil conditions conducive to deficiencies of S, B, Zn, and Mn and the methods and materials used for correcting deficiencies.

04. Describe environmental factors that affect S availability to crops.

05. Understand the conditions where a crop may respond better to either a soil or foliar micronutrient application.

Competency Area 7. Fertilizer, Forms and Application

01. Describe the advantages, limitations and precautions associated with the following fertilizer placements methods:
 a. Injection
 b. Broadcast
 c. Band
 d. Fertigation
 e. Foliar
 f. Sidedress
 g. Topdress
 h. Seed-placed
 i. Aerial

02. Describe sources of plant nutrients that are approved for certified organic crop production.

03. Explain how to calibrate different types of fertilizer spreaders or applicators.

04. Define fertilizer grade and analysis.

05. Explain how to calculate amounts and rates of fertilizer needed to meet specified soil test recommendations.

06. Convert P and K from elemental to oxide form and vice versa.

07. Understand conditions where an economic return can be gained from starter fertilizer.
08. Understand how weather conditions affect nutrient loss or carryover.

09. Describe the influence of salt index on starter fertilizer materials and rates of application.

Competency Area 8. Manure Management

01. Understand the relationship between total and available nutrient content for nitrogen, phosphate and potash for beef, dairy, poultry and swine manure.

02. Discuss the risks and application restrictions for spreading manure on:
 a. Frozen and snow covered soils
 b. Land adjacent to karst or other features with open access to groundwater
 c. Sloping land
 d. Land adjacent to surface water
 e. Soils with high leaching potential
 f. Land adjacent to wells

03. Explain how to calibrate a manure spreader and calculate rates of manure and manure nutrient applications.

04. Describe the different manure application methods and how each affects nutrient availability and the potential for nutrient loss.

05. Discuss the allocation of manure to farm fields based on:
 a. The Wisconsin P Index
 b. Soil test P
 c. Crop nitrogen requirement
 d. Site characteristics

06. Recognize how bedding type, storage, and processing affect manure nutrient value.

07. Describe proper manure sampling and sample-handling procedures.

08. Discuss economic considerations involved in comparing manure and/or other organic wastes with commercial fertilization.

09. Understand how to use the Manure Management Advisory System.

Competency Area 9. Soil Testing and Plant Analysis

01. Describe the University of Wisconsin recommendations for soil sampling and handling:
 a. Whole-field
 b. Grid-point
 c. Management zones
 d. Contour strips
02. Describe the effect of the following factors on soil test results and interpretations:
 a. Depth of sampling
 b. Frequency of sampling
 c. Number of cores per composite sample
 d. Number of composite samples per field
 e. Areas to be avoided
 f. Handling of samples for nitrate-N analysis
 g. Fall versus spring sampling
 h. Tillage management

03. Describe University of Wisconsin recommendation for plant sampling the major Wisconsin crops with respect to:
 a. Plant part to sample
 b. Stage of growth
 c. Handling of sample

04. Interpret soil test and plant analysis reports for:
 a. Level of nutrient deficiency or sufficiency
 b. Potential for crop response to applied nutrients
 c. Lime required to adjust soil pH
 d. Sufficiency level based on DRIS and PASS methods

05. Understand the University of Wisconsin nutrient application guidelines as presented in UWEX publication A2809.

06. Understand the use of soil N availability tests:
 a. Pre-plant nitrate test
 b. Pre-sidedress nitrate test

Competency Area 10. Nutrient Management Planning

01. List situations where a conventional versus a comprehensive nutrient management plan is required.

02. Understand the USDA NRCS 590 Technical Standard with respect to the:
 a. Minimum criteria.
 b. Additional criteria for groundwater protection
 c. Additional criteria for surface water protection
 d. Technical notes

03. List the required components of a conventional and a comprehensive nutrient management plan.
04. Discuss the impact of manure management on nutrient management planning:
 a. Describe the allocation of manure to fields based on:
 i. Restrictions for frozen or snow covered soil, slope, proximity to surface water, groundwater access, and wetlands
 ii. Crop N or P demand
 iii. Amount of manure produced vs. collected
 iv. Dry matter content of liquid manure
 iv. P Index versus soil test P
 b. Explain how manure storage and application method affect nutrient management plans
 c. Discuss how required conservation practices affect nutrient management:
 i. Conservation tillage
 ii. Crop rotation
 iii. In-field structures

05. Identify factors that encourage the implementation of nutrient management plans.

Competency Area 11. Soil and Plant Additives

01. Understand the characteristics of various non-traditional soil and plant additives:
 a. Growth regulators
 b. Biological inoculants
 c. Organic supplements
 d. Low analysis/low volume fertilizers
 e. Wetting agents
Soil and Water Management Competency Areas:

1. Basic Properties (Physical and Biological)
2. Soil Erosion
3. Tillage and Crop Residue Management
4. Soil Compaction
5. Site Characterization
6. Site-Specific Soil Management
7. Land Application of Municipal and Industrial Wastes
8. Water and Solute Movement
9. Irrigation
10. Drainage
11. Soil Quality
12. Water Quality
SOIL AND WATER MANAGEMENT PERFORMANCE OBJECTIVES

Competency Area 1. Basic Properties (Physical and Biological)

Physical

01. Describe the impact of the five soil forming factors on soil characteristics:
 a. Climate
 b. Parent material
 c. Topography
 d. Living organisms
 e. Time

02. Define the following basic soil properties:
 a. Soil texture
 b. Soil structure
 c. Soil bulk density
 d. Soil porosity

03. Use the soil textural triangle to identify soil textural class.

04. Describe how to determine soil texture by the hand texturing method.

05. Understand how soil texture affects:
 a. Field moisture capacity
 b. Wilting point
 c. Plant available water
 d. Infiltration and water movement through soils
 e. Soil temperature

06. Differentiate between the following soil structure types:
 a. Granular
 b. Platy
 c. Blocky
 d. Columnar and prismatic
 e. Structureless
 i. Massive
 ii. Single-grained

07. Describe how the following affect soil structure:
 a. Soil organisms and organic matter
 b. Mechanical forces
 i. Wheel traffic
 ii. Wetting/drying
 iii. Freezing/thawing
 iv. Excessive tillage
c. Cropping system
d. Soil texture
e. Soil additives and amendments

08. Describe the relationship between soil bulk density and soil porosity.

09. List typical values for soil bulk density and porosity as affected by texture.

10. Describe how the following affect soil color:
 a. Drainage
 b. Organic matter
 c. Parent material

Biological

11. List the components of soil organic fraction.

13. Describe how to maintain or increase soil organic matter levels.

14. Explain why it is difficult to increase soil organic matter.

15. Explain how the following agricultural practices influence soil microbial activity:
 a. Tiling
 b. Tillage
 c. Organic matter additions
 d. Fertilizer and lime applications
 e. Pesticide use
 f. Crop rotation
 g. Grazing
 i. Fumigation
 j. Cover crops

16. Explain how the C:N ratio of a material affects organic matter decomposition and nutrient availability.

17. Explain the role of soil microorganisms for:
 a. Nutrient transformations and cycling.
 b. Soil structure formation and maintenance.
 c. Degradation of pathogens and contaminants.

18. Discuss composting as a method to manage organic materials.
Competency Area 2. Soil Erosion

01. Describe the soil erosion process for:
 a. Water
 b. Wind

02. Differentiate between the following types of water erosion:
 a. Sheet
 b. Rill
 c. Ephemeral gully
 d. Gully

03. Explain how each of the following factors of the Revised Universal Soil Loss Equation 2 (RUSLE2) affect the rate of water erosion:
 a. Duration and intensity of rainfall (R)
 b. Soil erosivity (K)
 c. Slope length (L)
 d. Slope steepness (S)
 e. Rotation and tillage (C)
 f. Conservation practices (P)

04. Explain how each of the following factors affect the rate of erosion by wind:
 a. Vegetative and residue cover
 b. Wind velocity
 c. Shelterbelts and unsheltered distance
 d. Soil surface roughness
 e. Soil texture
 f. Soil additives such as polymers

05. Describe how erosion decreases the following:
 a. Crop yield potential
 b. Water holding capacity
 c. Plant available nutrients
 d. Organic matter content
 e. Infiltration
 f. Surface water quality
 g. Air quality

06. Explain how each of the following cropland conservation practices decrease water erosion:
 a. Strip cropping
 b. Contour tillage
 c. Terraces
 d. Grassed waterways
 e. Surface crop residues
 f. Cover crops
g. Row spacing
h. Crop rotation

07. Describe the purpose and function of a riparian vegetative filter strip.

08. Understand the purpose and use of the Soil Conditioning Index (SCI) and the Soil Tillage Intensity Rating (STIR)

09. Describe the factors that influence the Phosphorus Index

Competency Area 3. Tillage and Crop Residue Management

01. Discuss how the following influence tillage selection and management:
 a. Crop rotation
 b. Production economics
 c. Soil properties
 d. Conservation planning

02. List the advantages, disadvantages and limitations of each of the following tillage systems:
 a. Moldboard plowing
 b. Chisel plowing or mulch tillage
 c. No-till
 d. Zone or strip-tillage
 e. Vertical tillage

03. List advantages, disadvantages and limitations of each of the following pieces of tillage equipment:
 a. Twisted shanks vs. points vs. sweeps for chisel plows
 b. Planter residue-clearing attachments
 c. Tandem disk
 d. Field cultivator
 e. Combination tillage tools
 f. Row crop cultivators
 g. Rotary hoe

04. Describe the influence of tillage system, implement setup, and implement operation on the following:
 a. Crop residue level
 b. Soil disturbance
 c. Incorporation of fertilizer, lime and pesticides
 d. Manure management
 e. Pest type and severity
 f. Water infiltration

05. Describe the relationship between deep tillage (sub-soiling) method and crop residue level.
06. Explain how to estimate percent surface crop residue using the line-transect method.

Competency Area 4. Soil Compaction

01. List the causes and significance of the following restrictive soil layers:
 a. Crusting
 b. Surface compaction
 c. Subsurface compaction

02. Describe methods to detect subsurface compaction.

03. List soil and plant symptoms of compaction.

04. Describe methods of preventing and alleviating soil compaction.

05. Understand the benefits and limitations of freezing/thawing, wetting/drying, and deep tillage as methods to remove compaction.

06. Understand the efficacy of using amendments to alleviate soil compaction.

Competency Area 5. Site Characterization

01. Use the USDA NRCS Web Soil Survey to create a soil map and determine soil characteristics.

02. Describe limitations to crop production with respect to the following factors:
 a. High leaching potential
 b. Highly erodible land
 c. Sinkholes and creviced bedrock
 d. Surface water features
 e. Natural dense subsoils

Competency Area 6. Site-Specific Soil Management

01. Define site-specific management and understand the importance to properly assess within field variability.

02. Describe basic coordinate systems:
 a. Latitude/longitude
 b. State plane

03. Explain the function of basic site-specific management tools:
 a. Differentially corrected GPS
 b. Crop yield monitors and yield mapping software
 c. Variable-rate application for fertilizer and lime, planters, sprayers, and irrigation
4. Understand the use and limitations of methods used to assess within-field variability of soil properties:
 a. Grid-point sampling method and grid size
 b. Management zones
 c. Remote sensed and other digital imagery
 d. On-the-go sensors
 e. Yield mapping

5. Describe benefits and concerns associated with site-specific management.

Competency Area 7. Land Application of Municipal and Industrial Wastes

01. Discuss the agronomic and regulatory considerations for the land application of waste materials.

02. Describe characteristics of the following waste materials:
 a. Municipal biosolids
 b. Cheese plant wastewater
 c. Solid waste compost
 d. Construction debris
 e. Papermill sludge
 f. By-product liming materials
 g. Industrial wastewater and solids

03. Regarding regulations controlling land application of waste materials:
 a. List information needed to apply for appropriate permits
 b. Discuss the factors affecting setbacks required for land applications
 c. Describe method for determining material application rate
 d. Discuss potential impacts on environmental quality and human or animal health

Competency Area 8. Water and Solute Movement

01. Explain the importance of the following components with respect to the soil water cycle and Wisconsin’s agricultural water budget:
 a. Precipitation
 b. Irrigation
 c. Runoff quantity and velocity
 d. Soil water storage
 e. Evapotranspiration
 f. Percolation
 g. Tiling and ditching
02. Describe how the following factors influence infiltration:
 a. Soil texture
 b. Soil structure
 c. Crop residue cover
 d. Crop canopy
 e. Soil organic matter
 f. Surface crusting
 g. Landscape position
 h. Soil compaction
 i. Soil pore size distribution
 j. Earthworm activity

03. Describe the forces that regulate water flow under saturated and unsaturated conditions.

04. Describe how the following factors influence solute leaching:
 a. Infiltration
 b. Soil texture
 c. Natural and man-made soil layers

05. Explain the significance of the following factors with respect to the leaching of solutes:
 a. Depth to groundwater and bedrock
 b. Evapotranspiration
 c. CEC
 d. Soil organic matter
 e. Soil texture
 f. Ionic charge
 g. Solubility
 h. Persistence of organic compounds

06. Define preferential flow and its effect on solute movement.

07. Describe how the following management practices affect solute movement:
 a. Application timing
 b. Application rate
 c. Erosion control
 d. Irrigation
 e. Tillage method
 f. Artificial drainage

08. Describe management practices that minimize nitrogen and phosphorus transport from a field.

09. Describe Wisconsin’s agricultural water budget as it relates to crop production and soil and nutrient management.

10. Understand the ability of cover crops to attenuate plant nutrients.
Competency Area 9. Irrigation

01. Describe the following irrigation methods:
 a. Sprinkler
 b. Low pressure
 c. Drip/trickle

02. Describe the factors used in developing an irrigation schedule.

03. Explain regulations associated with placing irrigation systems.

Competency Area 10. Drainage

01. Explain regulations associated with installing agricultural drainage systems.

02. Identify characteristics of well-drained and poorly drained soils.

03. Describe the following drainage methods:
 a. Tile
 b. Open ditch
 c. Land forming and surface drainage
 d. Diversions

04. Identify soil data used to determine the effectiveness of tile drainage.

05. Understand the basic design criteria for a tile drainage system.

06. Describe field characteristics that identify inoperative tile lines.

Competency Area 11. Soil Quality

01. Define soil quality in the context of crop production.

02. Describe factors that affect soil quality in a crop production system.

03. Describe methods of assessing soil quality.

04. Identify soil management practices that can improve soil quality.
Competency Area 12. Water Quality

01. Describe how nutrients, pesticides and sediments move off fields and negatively impact water quality.
 a. Overland in runoff.
 b. Into and through tile lines.
 c. Through macropores and karst features
 d. Spray drift

02. Identify the contaminants in groundwater that may come from agriculture.

03. Describe how agricultural practices may affect drinking water quality.

04. State the nitrate drinking water standard.

05. Cite the human health consequences of drinking water contaminated with nitrate and coliform bacteria.

06. Describe management practices to minimize groundwater contamination by nitrate and other compounds.

07. Identify the contaminants in surface water that may come from agriculture.

08. Understand how the Phosphorus Index can be used to reduce the risk of phosphorus loss to surface water.

09. Explain how sediment in runoff affects water quality.

10. Describe the effect of tillage or manure on phosphorus delivery to surface water.

11. List management practices that would limit the loss of phosphorus from high-testing soils.

12. Define hypoxia and discuss its relationship to agriculture.

13. Understand the criteria of a Water Quality Management Area and how to create a map showing restrictions.

14. Understand how pharmaceuticals, personal care products, and other chemicals associated with human and livestock health can be found in surface water.

15. Recognize the role of the USDA-NRCS Nutrient Management Standard 590 and WDNR Code NR 151 for protecting water resources.
WISCONSIN CERTIFIED CROP ADVISER PERFORMANCE OBJECTIVES

Pest Management Competency Areas:

1. Integrated Pest Management
2. Weed Management
3. Insect Management
4. Plant Disease Management
5. Pesticides & the Environment
6. Pesticides & Human Health
7. Pesticide Application Equipment Calibration
8. Pesticides and Surface and Groundwater Protection
9. Pesticides and Employee and Public Protection
10. Pesticide Use Records
11. Pesticide Labels and Registration
PEST MANAGEMENT PERFORMANCE OBJECTIVES

Competency Area 1. Integrated Pest Management

01. Identify the different IPM tactics (e.g. cultural, mechanical, etc.) and describe their use in an IPM program.

02. Describe the scouting techniques for the key pests of major Wisconsin crops.

03. Identify what crop and pest management information is needed to develop an IPM program.

04. Define economic threshold and economic injury level, and describe how they can be used in formulating IPM recommendations.

05. List the advantages and limitations of chemical and non-chemical pest control tactics.

06. Relate the importance of Wisconsin’s environmental conditions and how it affects pests, pest populations and crop production. (For example, pest migration and time of arrival, disease potential vs. environmental conditions).

Competency Area 2. Weed Management

01. Identify Wisconsin’s common weeds:
 a. Wild Proso Millet
 b. Canada thistle
 c. Common lambsquarters
 d. Common ragweed
 e. Large crabgrass
 f. Smooth crabgrass
 g. Eastern black nightshade
 h. Giant foxtail
 i. Yellow foxtail
 j. Green foxtail
 k. Giant ragweed
 l. Quackgrass
 m. Redroot pigweed
 n. Velvetleaf
 o. Yellow nutsedge
 p. Woolly Cupgrass
 q. Tall Waterhemp
 r. Wirestem muhly
 s. Horseweed (Marestail)
 t. Dandelion
u. Hemp dogbane
v. Leafy spurge
w. Field Bindweed

02. Explain how herbicide-resistant weed populations develop and describe effective management strategies to control resistance.

03. Know the current herbicide-resistant weeds in Wisconsin and describe management strategies to limit their spread.

04. Describe the mode of action and injury symptoms for common herbicides used on Wisconsin crops.

05. Outline appropriate management strategies in no-till, minimum till and conventional tillage systems for annual, winter annual, biennial and perennial weeds in Wisconsin crops.

06. Explain how cultural practices impact weed management.

07. Describe mechanical and other non-herbicide weed control methods.

08. Explain why weed competitive indices and thresholds differ among field, vegetable, and forage crops.

09. Understand the relationship between timing of weed removal and yield in Wisconsin crops.

Competency Area 3. Insect Management

01. Identify each of the following insect and mite pests, their feeding habits, injury symptoms, life cycle, economic threshold (if available), and appropriate management tactics:
 a. Alfalfa weevil
 b. Armyworm
 c. Bean leaf beetle
 d. Black cutworm
 e. Colorado potato beetle
 f. Corn earworm
 g. Corn rootworm
 h. European corn borer
 i. Green peach aphid
 j. Hop vine borer
 k. Japanese beetle
 l. Potato leafhopper
 m. Seed corn maggot
n. Soybean aphid
o. Stalk borer
p. Tarnished and alfalfa plant bugs
q. Two-spotted spider mites
r. Variant western corn rootworm
s. Western bean cutworm
t. White grubs
u. Wireworms

02. Identify the common beneficial insects (e.g., lady beetle larvae and adults, damsel bugs) found in Wisconsin cropping systems.

03. Explain the role natural enemies (e.g., predators, parasitoids, and insect pathogens) have in insect pest management programs and how they can affect pest abundance.

04. Describe how crop production, crop sequence, environmental conditions, tillage, and weed control influence the potential for occurrence of insect and mite pests.

05. Outline IPM plans for managing insect resistance to transgenic crop plants, including IRM requirements and refuge placement.

06. Describe how insect resistance to pesticides could develop and discuss methods that would control the development of resistant biotypes.

Competency Area 4. Plant Disease Management

01. Identify symptoms, pathogen disease cycle, host range, disease development, contributing environmental factors and appropriate management options for the following key diseases and pathogens:
 a. Phytophthora root rot of alfalfa
 b. Aphanomyces root rot of alfalfa
 c. Crown rot of alfalfa
 d. Verticillium wilt of alfalfa
 e. Phytophthora root and stem rot of soybean
 f. White mold on soybean
 g. Soybean cyst nematode
 h. Brown stem rot of soybean
 i. Sudden death syndrome of soybean

02. Identify damage symptoms caused by the following diseases and pathogens and discuss their management:
 a. Alfalfa
 i. Spring black stem
 ii. Root-knot nematode
 iii. Fusarium wilt
 iv. Downy mildew
25

b. Soybean
 i. Soybean rust
 ii. Soybean mosaic
 iii. Green stem disorder
 iv. Downy mildew
 v. Bean pod mottle virus
 vi. Septoria brown spot
 vii. Bacterial blight
 viii. Charcoal rot

c. Corn
 i. Rust
 ii. Eyespot
 iii. Gray leaf spot
 iv. Goss’s wilt
 v. Northern corn leaf blight
 vi. Anthracnose leaf blight and stalk rot
 vii. Gibberella stalk rot
 viii. Ear rots (Gibberella, Fusarium)
 ix. Stewart’s wilt
 x. Seedling blight
 xi. Root lesion nematode

d. Small Grains
 i. Fusarium head blight (Scab)
 ii. Septoria leaf blotch
 iii. Rusts
 iv. Powdery mildew
 v. Barley yellow dwarf/oat red leaf
 vi. Take-all root rot
 vii. Ergot

e. Potatoes
 i. Late blight
 ii. Early blight
 iii. Early dying (Verticillium and root lesion nematode)

f. Snapbean and Peas
 i. Pythium
 ii. Aphanomyces root rot
 iii. Bacterial brown spot
 iv. Rhizoctonia root rot
 v. White mold

03. Identify how environmental and host factors relate to disease development.

04. Recognize clues as to whether a problem is caused by an abiotic agent or pathogen.

05. Identify strategies to manage pesticide resistance in pathogen populations that reduce the risk of selecting resistant strains.
06. Describe nematode biology and management practices for Wisconsin crops.

07. Discuss the use of fungicides for disease control and how to prevent resistance from developing.

Competency Area 5. Pesticides and the Environment

01. Describe the options for disposing of pesticide containers.

02. List the “3 C’s” of pesticide spill management (control, contain, clean up) and describe the conditions that would require reporting a pesticide spill including the primary first contact.

03. Understand the difference between “drift” and “overspray”, Wisconsin’s regulations regarding them, and appropriate prevention methods. Contrast particle drift and vapor drift.

04. Describe the relation of each of the following to drift:
 a. Weather conditions
 b. Spray particle size, including those factors which influence particle size
 c. Method of application, nozzle type, and nozzle height

05. List ways in which a pesticide can move from the site of application.

06. Describe each of the following and its effect on the movement of a pesticide from a target site:
 a. Adsorption
 b. Solubility
 c. Volatility
 d. Degradation
 e. Persistence

07. Describe how characteristics of a pesticide and a given site affect the likelihood of groundwater and surface water contamination.

08. List management practices that help prevent groundwater and surface water contamination.

09. Contrast point and nonpoint sources of pollution.

10. Know the common ways in which non-target plants and animals become exposed to pesticides and how to prevent or minimize such exposure.

11. Summarize management options to protect beneficial insects from pesticides.
12. Recognize the responsibilities of the farmer, commercial pesticide applicator and beekeeper with respect to advance notification of pesticides, labeled as “Highly Toxic to Bees”.

Competency Area 6. Pesticides and Human Health

01. List the four routes by which pesticides enter the body.

02. Give examples of how a person may be exposed to pesticides via these four routes.

03. Recognize the general symptoms of pesticide poisoning and list appropriate responses to pesticide exposure incidents.

04. Compare the different levels of protection afforded by work clothes, coveralls, aprons and spray suits.

05. Understand when and what type of respirator should be worn.

Competency Area 7. Pesticide Application Equipment Calibration

01. Discuss the variables that determine the application rate for sprayers and granular applicators.

02. Recognize the importance of spray pattern uniformity.

03. Describe the procedures used to calibrate sprayers and granular applicators and the methods used to adjust output.

04. Calculate the amount of pesticide and adjuvant to add to the spray tank of a calibrated sprayer.

05. Define Volume Mean Diameter (VMD) and understand how it affects spray coverage and drift.

Competency Area 8. Pesticides and Surface and Groundwater Protection

01. Distinguish between preventative action limits and enforcement standards with respect to groundwater contamination from pesticides.

02. Understand whether a site is suitable for mixing and loading with respect to nearby wells or surface water.

03. Describe the purpose and use of a mixing and loading pad and when such a pad is required.
04. Describe precautions that must be taken to protect the water supply when mixing and loading.

05. Outline Wisconsin’s atrazine use rule.

Competency Area 9. Pesticides and Employee and Public Protection

01. Identify employers, employees and the pesticide applications that are covered by the Worker Protection Standard (WPS).

02. List the responsibilities of employers of pesticide handlers and agricultural workers regarding PPE.

03. List the responsibilities of employers of pesticide handlers and agricultural workers when a victim of pesticide exposure or heat stress needs medical attention.

04. Identify who must receive WPS safety training and when.

05. Identify who can be in a treatment area during an application that is covered by the WPS.

06. Describe when and where decontamination sites are required and what such sites include.

07. List the agricultural employer’s responsibilities to a handler who is applying a pesticide.

08. Explain the purpose of the employer information exchange and what types of information must be exchanged before and after an application, including information required by the WPS and ATCP 29.

09. List the information that must be displayed at a central location for viewing by workers and handlers and indicate how long such information must be displayed.

10. Determine when you must give workers oral warning of a pesticide application under the WPS, the time frame in which you must do so and the content of such a warning.

11. Identify who may enter a treated site during a restricted-entry interval.

12. Know the conditions and restrictions for early entry with no contact and early entry with contact into a treated site.

13. Understand the role of State and Federal agencies with respect to pesticide application regulations.

Competency Area 10. Pesticide Use Records

01. Determine when and for how long pesticide application records must be kept.
02. Describe when the USDA may request pesticide application records.

03. Recognize that pesticide application under emergency exemption (Section 18) or local need (Section 24 {C}) will require additional record keeping and reporting requirements.

Competency Area 11. Pesticide Labels and Registration

01. Understand that the label and supplemental labeling are legally binding documents.

02. Explain what to do if state laws are stricter than label directions.

03. Specify which directions should be followed when using a product whose label has changed since it was purchased.

04. Know how to determine if a pesticide is registered for use in Wisconsin through the WDATCP.

05. Describe and locate the kinds of information that appear on a pesticide label.

06. List the four ways in which a person may legally deviate from pesticide label directions.

07. Explain how a pesticide product’s signal word and relative toxicity are related.
WISCONSIN CERTIFIED CROP ADVISER
PERFORMANCE OBJECTIVES

Crop Management Competency Areas:

1. Soil Adaptation for Major Wisconsin Crops
2. Cropping Systems
3. Crop Establishment
4. Crop Management during Growth & Development
5. Harvest Factors
CROP MANAGEMENT PERFORMANCE OBJECTIVES

Competency Area 1. Soil Adaptation for Major Wisconsin Crops

01. Explain the optimum pH range for the major Wisconsin crops and how these crops respond to pH modification.

02. Describe the relative nutrient requirements of the major Wisconsin crops.

03. Explain the specific environmental and soil conditions that influence the selection and production strategies for the major Wisconsin crops.

04. Understand the role of plant breeding for establishing traits in major Wisconsin crops.

Competency Area 2. Cropping Systems

01. Understand the management and environmental and economic considerations in making crop rotation decisions involving major Wisconsin crops.

02. Recognize the ramifications associated with introduction of a processing crop into a cash grain or forage system.

03. Identify the advantages and limitations of using cover crops.

04. Explain the advantages and limitations of organic crop production systems.

05. Understand the ramifications of minimum-till and no-till strategies as they relate to cropping system and rotation decisions.

Competency Area 3. Crop Establishment

01. Describe the environmental and cultural factors influencing seeding depth, seeding rate, and row spacing for common Wisconsin planting systems.

02. Discuss how tillage management considerations may impact crop establishment for various cropping systems.

03. Identify principles underlying optimum planting time, the consequences of planting too early or too late, and the effect of relative maturity for major Wisconsin crops.

04. Explain how each major crop responds to changes in row spacing (including twin rows) and plant population.

05. Describe the value of inoculation of legume seed and the environments in which it should be done.
06. Explain how to calculate seeding rates and plant populations.

07. Describe the effect of seed quality on germination and crop growth.

08. Know the conditions where seed treatments for insects, diseases, growth regulators, micronutrients, inoculants, and animal repellents will provide an economic benefit.

09. Identify and utilize the information required on seed tags.

10. Understand the criteria for selecting adapted crop varieties and hybrids:
 a. Emergence
 b. Disease and pest resistance
 c. Population and row spacing
 d. End use
 e. Soil type
 f. Location in state
 g. Drought tolerance
 h. Resistance to lodging
 i. Yield performance

11. Explain the advantages and limitations of planting transgenic crops.

12. Understand the various GMO events and how they impact management.

13. Identify the advantages and disadvantages of value-added crops.

14. Explain the basic components of precision agriculture and its advantages and disadvantages including variable-rate application of inputs, variable seeding, and yield mapping.

Competency Area 4. Crop Management During Growth and Development

01. Recognize and utilize growth staging systems for the major crops.

02. State the factors influencing winter hardiness of forages and winter wheat and the effect management practices have on winter survival.

03. Demonstrate awareness of diagnostic techniques such as soil and plant analysis; nematode testing; insect, weed and disease identification; and proper sample submission to diagnostic laboratories.

04. Calculate growing degree-days and relate the growing degree-day concept to corn and other crop development.

05. Describe how environmental, water, and nutrient needs of crops change during crop growth and developmental stages and how these factors affect maximum crop yield.
06. Discuss diagnostic methods to assess the impact of, and options for addressing the following:
 a. Winter kill
 b. Hail
 c. Frost
 d. Fertilizer/chemical damage
 e. Wildlife damage
 f. Insect or disease injury
 g. Flooding

Competency Area 5. Harvest Factors

01. Explain the optimum stage at which to harvest the major Wisconsin crops for grain, forage, or edible plant part and understand how harvest management and timing affects yield and quality.

02. Explain the consequences relative to soil conservation for baling, grazing or chopping crop residue.

03. Explain how fall harvest management of alfalfa affects yield, winter survival and feed value of the following year’s crop.

04. Cite the appropriate moisture ranges for forages stored in various structures (upright silos, bunkers, bags, etc.).

05. Understand crop drying and processing systems.

06. Describe harvest and grading factors for crop use.

07. Know the harvest and storage factors that impact crop quality and yield losses for the major Wisconsin crops:
 a. Cut/chop length
 b. Ensiling and fermentation
 c. Packing and sealing in storage structures

08. Understand methods that determine harvest losses.
WISCONSIN CERTIFIED CROP ADVISER
PERFORMANCE OBJECTIVES

References:

1. Nutrient Management
2. Soil and Water Management
3. Pest Management
4. Crop Management
REFERENCES

The following publications are available from the University of Wisconsin Cooperative Extension Service Publications:

Cooperative Extension Publications
432 N. Lake St., Madison, WI 53706
877-947-7827
http://learningstore.uwex.edu/

Nutrient Management

- Sampling Soils for Testing. (UWEX publication # A2100)
- Understanding Plant Nutrients Series –
 Soil and Applied:
 - Nitrogen. (UWEX publication # A2519)
 - Phosphorus. (UWEX publication # A2520)
 - Potassium. (UWEX publication # A2521)
 - Boron. (UWEX publication # A2522)
 - Calcium. (UWEX publication # A2523)
 - Magnesium. (UWEX publication # A2524)
 - Sulfur. (UWEX publication # A2525)
 - Manganese. (UWEX publication # A2526)
 - Copper. (UWEX publication # A2527)
 - Zinc. (UWEX publication # A2528)
 - Iron. (UWEX publication # A3554)
 - Molybdenum. (UWEX publication # A3555)
 - Chlorine. (UWEX publication # A3556)
- Nutrient Application Guidelines for Field Vegetable and Fruit Crops in Wisconsin. (UWEX publication # A2809)
- Management of Wisconsin Soils. (UWEX publication # A3588)

Soil and Water Management

- Management of Wisconsin Soils. (UWEX publication # A3588)
- Estimating Residue Using the Line Transect Method. (UWEX publication # A3533)
- Irrigation Management in Wisconsin – The Wisconsin Irrigation Scheduling Program (WISP). UWEX publication # A3600
Pest Management

- Pest Management in Wisconsin Field Crops (UWEX publication # A3646)
- Weeds of the North Central States (UWEX publication # NCR 281)
- Herbicide Mode of Action and Injury Symptoms (UWEX publication # NCR 377)
- Reduced Herbicide Rates: Aspects to Consider (UWEX publication # A3563)
- Common Weed Seedlings of the North Central States (UWEX publication # NCR 607)
- Corn Insects Above Ground (UWEX publication # A2046)
- Corn Insects Below Ground ((UWEX publication # A2047)
- Corn Rootworm (UWEX publication # A3328)
- The European Corn Borer (UWEX publication # A1220)
- Small Grain Insects (UWEX publication # A2558)
- Alfalfa Management Guide (UWEX publication # NCR 547)
- Red Clover-Establishment, Management and Utilization (UWEX publication # A3492)
- Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)
- Wisconsin Pesticide Law (Chapter 94. 67-71)
- Wisconsin Groundwater Law (Chapter 160)
- Wisconsin Spill Law (Chapter 144.76)
- Pesticide Use and Control (Chapter ATCP 29)
- Pesticide Product Restrictions (Chapter ATCP 30)
- Worker Protection Standard How to Comply Manual
- Training Manual for the Commercial Pesticide Applicator: Field & Vegetable Crops (available from UWEX Pesticide Applicator Training Program)
- Training Manual for the Private Pesticide Applicator (available from your county Extension office)

Contact the UWEX Pesticide Application Program for current pesticide rule publications (608-262-7588)

Crop Management

- Alfalfa Management Guide. (UWEX publication # NCR 547)
- Commercial Vegetable Production in Wisconsin. (UWEX publication # A3422)
- Small Grain Varieties for Grain and Forage in Wisconsin. (UWEX publication # A3397)
- Selecting Corn Hybrids (UWEX publication # A3265)
- Uneven Emergence in Corn (UWEX publication # NCR 344)
Other University of Wisconsin Cooperative Extension Publications

- Field Crop Scouting Manual (available from UWEX IPM Program, 608-263-4073, also available at: http://ipcm.wisc.edu/)
- Vegetable Crop Scouting Manual (available from UWEX IPM Program, 608-263-4073, also available at: http://ipcm.wisc.edu/)

Other Publications

- Identification of Aphids on Small Grains (Washington State University, publication # EB0003, Telephone: 1-800-723-1763)
- Vegetable Insect Management with Emphasis on the Midwest (Meister Publishing Company, Willoughby, Ohio)
- Ontario Weeds (Publications Ontario, 416-326-5300)
- Weeds of Nebraska and the Great Plains (Nebraska Dept. of Agriculture, Bureau of Plant Industry, P.O. Box 94756, Lincoln, NE 68509)
- Weeds of the Northeast (CUP Services, Telephone 607-277-2211)
- Waterhemp Management in Agronomic Crops (publications # X855, Communication Services, University of Illinois at Urbana-Champaign, telephone 217-333-2007)
- Guide to Herbicide Injury Symptoms in Corn (Agri-Growth Research, telephone 507-889-4371)
- Guide to Herbicide Injury Symptoms in Soybean (Agri-Growth Research, telephone 507-889-4371)
- USDA-NRCS Nutrient Management Standard 590 (Sept. 2005)
- USDA-NRCS Wisconsin Conservation Planning Technical Note WI-1
- WDATCP Soil and Water Resource Management Chapter ATCP 50
- WDNR Runoff Management Chapter NR 151

Websites:

http://www.weeds.iastate.edu/ Iowa State University Weed Science Program, Department of Agronomy

http://datcp.state.wi.us/static/arm/ Wisconsin Department of Agriculture, Trade and Consumer Protection, Agriculture Resource Management Division

http://www.ipni.net/ International Plant Nutrition Institute
University of Wisconsin Cooperative Extension and College of Agricultural and Life Sciences websites

http://www.uwex.edu/ces/crops/uwforage/uwforage.htm
http://www.uwex.edu/ces/forage/
http://ipcm.wisc.edu/

http://fyi.uwex.edu/weedsci
http://www.plantpath.wisc.edu/soyhealth/
http://soybean.uwex.edu/
http://corn.agronomy.wisc.edu/
http://ipcm.wisc.edu/wcm/
http://www.uwex.edu/ces/ag/teams/grains/
http://www.plantpath.wisc.edu/pddc/

http://www.entomology.wisc.edu/diaglab/entodiag.html
http://agronomy.wisc.edu/
http://www.entomology.wisc.edu/
http://www.horticulture.wisc.edu/
http://www.plantpath.wisc.edu/
http://www.soils.wisc.edu/extension/

http://uwlab.soils.wisc.edu/
http://www.soils.wisc.edu/wimnext/
http://fyi.uwex.edu/fieldcroppathology/
http://www.plantpath.wisc.edu/wivegdis/

University of Wisconsin-Extension Team Forage
University of Wisconsin Forage Research and Extension
UW Integrated Crop and Pest Management Programs (NPM, IPM, PAT)
UW-Weed Science
UW-Soybean Plant Health web site
UW Soybean Extension
Wisconsin Corn Agronomy
Wisconsin Crop Manager
Extension, Team Grains
Plant Disease Diagnostics Clinic

Insect Diagnostic Lab
UW Department of Agronomy
UW Department of Entomology
UW Department of Horticulture
UW Department of Plant Pathology
UW Soil Science Research and Extension
Wisconsin Soil and Plant Analysis Lab
UW-MN Cooperative Extension Agricultural Weather
UW Field Crop Pathology
UW Vegetable Pathology